Heat flow characterization in masonry with EVA blocks

Footwear manufacturing generates different types of waste, and Ethylene Vinyl Acetate (EVA) is among them. Using such residues as lightweight aggregates in cement blocks production for vertical sealing in buildings is an alternative to reduce their environmental impact. This paper aims to characteri...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Gomes, Emmily Gérsica Santos, Melo, Aluísio Braz de
التنسيق: Online
اللغة:por
منشور في: Universidade Estadual de Campinas 2018
الوصول للمادة أونلاين:https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8651603
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Footwear manufacturing generates different types of waste, and Ethylene Vinyl Acetate (EVA) is among them. Using such residues as lightweight aggregates in cement blocks production for vertical sealing in buildings is an alternative to reduce their environmental impact. This paper aims to characterize heat flow in envelopes of EVA blocks, through a comparative analysis between samples built with EVA blocks and other conventional component types (ceramic bricks and concrete blocks). The heat flow characterization followed several steps, amongst which the following stand out: determine the temperature difference (ΔT) between the surfaces of each sample through tests conducted in a thermal chamber and calculate the thermal resistance (RT), as well as other properties addressed in NBR15220-2 (ABNT, 2005b). The experimental (ΔT) and calculated (RT) results were applied to a specific equation, which was used to determine the heat flow through the samples. The analysis demonstrated that the lowest heat flow (1,467 W) among the cement block samples corresponded to blocks with the highest EVA percentage (80%) in the composite, whose value was close to the one verified for samples built with ceramic bricks (1,276 W). The procedures adopted to set the heat flow through the samples showed differences between the concrete and ceramic block types, when considering their different geometries (internal voids and thicknesses), materials and EVA waste content.