Heat flow characterization in masonry with EVA blocks

Footwear manufacturing generates different types of waste, and Ethylene Vinyl Acetate (EVA) is among them. Using such residues as lightweight aggregates in cement blocks production for vertical sealing in buildings is an alternative to reduce their environmental impact. This paper aims to characteri...

Full description

Saved in:
Bibliographic Details
Main Authors: Gomes, Emmily Gérsica Santos, Melo, Aluísio Braz de
Format: Online
Language:por
Published: Universidade Estadual de Campinas 2018
Online Access:https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8651603
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Footwear manufacturing generates different types of waste, and Ethylene Vinyl Acetate (EVA) is among them. Using such residues as lightweight aggregates in cement blocks production for vertical sealing in buildings is an alternative to reduce their environmental impact. This paper aims to characterize heat flow in envelopes of EVA blocks, through a comparative analysis between samples built with EVA blocks and other conventional component types (ceramic bricks and concrete blocks). The heat flow characterization followed several steps, amongst which the following stand out: determine the temperature difference (ΔT) between the surfaces of each sample through tests conducted in a thermal chamber and calculate the thermal resistance (RT), as well as other properties addressed in NBR15220-2 (ABNT, 2005b). The experimental (ΔT) and calculated (RT) results were applied to a specific equation, which was used to determine the heat flow through the samples. The analysis demonstrated that the lowest heat flow (1,467 W) among the cement block samples corresponded to blocks with the highest EVA percentage (80%) in the composite, whose value was close to the one verified for samples built with ceramic bricks (1,276 W). The procedures adopted to set the heat flow through the samples showed differences between the concrete and ceramic block types, when considering their different geometries (internal voids and thicknesses), materials and EVA waste content.