Land use interpretation for cellular automata models with socioeconomic heterogeneity

Cellular automata models for simulation of urban development usually lack the social heterogeneity that is typical of urban environments. In order to handle this shortcoming, this paper proposes the use of supervised clustering analysis to provide socioeconomic intra-urban land use classification at...

全面介紹

Saved in:
書目詳細資料
主要作者: Furtado, Bernardo Alves
格式: Online
語言:por
出版: ANTAC - Associação Nacional de Tecnologia do Ambiente Construído 2011
在線閱讀:https://seer.ufrgs.br/ambienteconstruido/article/view/19099
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Cellular automata models for simulation of urban development usually lack the social heterogeneity that is typical of urban environments. In order to handle this shortcoming, this paper proposes the use of supervised clustering analysis to provide socioeconomic intra-urban land use classification at different levels to be applied to cellular automata models. An empirical test in a highly diverse context in the Greater Metropolitan Area of Belo Horizonte (RMBH) in Brazil is provided. The results show that a reliable division into different socioeconomic land-use classes at large scale enable detailed urban dynamic analysis. Furthermore, the results also allow the quantification of the proportion of urban space occupation for different levels of income; (2) and their pattern in relation to the city centre.