Comparison of machine learning techniques for predicting energy loads in buildings

Machine learning methods can be used to help design energy-efficient buildings reducing energy loads while maintaining the desired internal temperature. They work by estimating a response from a set of inputs such as building geometry, material properties, project costs, local weather conditions, as...

詳細記述

保存先:
書誌詳細
主要な著者: Duarte, Grasiele Regina, Fonseca, Leonardo Goliatt da, Goliatt, Priscila Vanessa Zabala Capriles, Lemonge, Afonso Celso de Castro
フォーマット: Online
言語:eng
出版事項: ANTAC - Associação Nacional de Tecnologia do Ambiente Construído 2017
オンライン・アクセス:https://seer.ufrgs.br/ambienteconstruido/article/view/69635
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!