Experimental appraisal for characterizing laboratorial and field performance parameters of pervious concrete pavement

Laboratorial tests with pervious concrete comprised porosity and hydraulic conductivity as well as mechanical parameters as compressive, indirect tensile and bending strengths besides assessing its static and dynamic elasticity moduli. Later, a pervious sidewalk area of 1.0 x 8.65 square meters was...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Batezini, Rafael, Balbo, José Tadeu, Haselbach, Liv, Curvo, Filipe de Oliveira, Kalleder, Guilherme Nunes, Sato, Beatriz Sayuri, Zema, Domênico
Format: Online
Langue:eng
Publié: ANTAC - Associação Nacional de Tecnologia do Ambiente Construído 2021
Accès en ligne:https://seer.ufrgs.br/ambienteconstruido/article/view/99343
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Laboratorial tests with pervious concrete comprised porosity and hydraulic conductivity as well as mechanical parameters as compressive, indirect tensile and bending strengths besides assessing its static and dynamic elasticity moduli. Later, a pervious sidewalk area of 1.0 x 8.65 square meters was built in order to determine the variation of the infiltration rate along time; over such experimental sidewalk, impact deflection tests performed allowed to assess backcalculated moduli of the pervious concrete layer, resulting 33% to 13% lower than conventional concretes. A mechanistic analysis allowed to estimate the required thickness of concrete for heavy- and light-traffic areas. Tests disclosed no significant difference among the different concrete mixes, with 25% porosity and 0,1 cm/s permeability. Initial sidewalk infiltration rate of 0.5 cm/s dropped 50% four months after construction. It was verified that pervious concrete thicknesses for trucks and buses use are far higher than conventional concrete pavements.