Proto-tectonic Weaving System: Computational Design Workflow for Semi-permeable Self-Supporting Enclosures

This paper aims to present a computationally based methodology and subsequent results arising from the application of weaving techniques for the construction of Weaving Enclosure, an experimental architectural system. The research explores the close correspondence between material properties and ass...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Naboni, Roberto, Breseghello, Luca
Formatua: Online
Hizkuntza:eng
Argitaratua: Universidade de São Paulo. Instituto de Arquitetura e Urbanismo 2016
Sarrera elektronikoa:https://www.revistas.usp.br/gestaodeprojetos/article/view/118166
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Gaia:This paper aims to present a computationally based methodology and subsequent results arising from the application of weaving techniques for the construction of Weaving Enclosure, an experimental architectural system. The research explores the close correspondence between material properties and assembly systems found in traditional basketry, studied through analytical and laboratory tests, and then implemented through finite element analysis and algorithmic workflow. The goal is to explore how to extend the knowledge gained through a millennial relationship between man and weaving under the perspective of contemporary design and fabrication techniques. In order to do so, a series of computational experiments and simulations have been introduced to highlight the integration of materiality, digital morphogenesis and fabrication. The paper presents a design workflow for the generation of specific geometries related to the elastic nature of the material and the simulation of its behavior based on variable environmental conditions. The results of this method showcase the design and fabrication of an interior partition, which highlights the properties of digitally conceived patterns, tuned parametrically to offer structural resistance and visual screening. The interaction between digital and craft techniques for natural materials represents a promising field to decrease the environmental impact of the construction industry. Nevertheless, novel assembly systems such as wood weaving seem to still have unexplored potential in terms of performative and tectonic characteristics which highlight important findings when approached as a material-driven design and fabrication process.