Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census
Gentrification is not always detected by society, policy and planning in time to interpret its dynamics and implement interventions that mitigate its adverse effects. Its implications are so important in the social physiognomy of cities, that any tool that can predict or evidence any kind of sign of...
Bewaard in:
| Hoofdauteurs: | , , |
|---|---|
| Formaat: | Online |
| Taal: | spa |
| Gepubliceerd in: |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Artes - Instituto de Investigaciones Hábitat, Ciudad & Territorio
2018
|
| Online toegang: | https://revistas.unal.edu.co/index.php/bitacora/article/view/70145 |
| Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
| id |
oai:www.revistas.unal.edu.co:article-70145 |
|---|---|
| record_format |
ojs |
| institution |
Universidad Nacional de Colombia |
| collection |
OJS |
| language |
spa |
| format |
Online |
| author |
Abarca-Alvarez, Francisco Javier Campos-Sánchez, Francisco Sergio Reinoso-Bellido, Rafael |
| spellingShingle |
Abarca-Alvarez, Francisco Javier Campos-Sánchez, Francisco Sergio Reinoso-Bellido, Rafael Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census |
| author_facet |
Abarca-Alvarez, Francisco Javier Campos-Sánchez, Francisco Sergio Reinoso-Bellido, Rafael |
| author_sort |
Abarca-Alvarez, Francisco Javier |
| title |
Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census |
| title_short |
Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census |
| title_full |
Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census |
| title_fullStr |
Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census |
| title_full_unstemmed |
Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census |
| title_sort |
signs of gentrification usin g artificial intelligence: identification through the dwelling census |
| description |
Gentrification is not always detected by society, policy and planning in time to interpret its dynamics and implement interventions that mitigate its adverse effects. Its implications are so important in the social physiognomy of cities, that any tool that can predict or evidence any kind of sign of gentrification will be relevant. The research seeks to assess the feasibility of detecting areas linked to gentrification processes, incipient or settled, by using common sources of information in cities, such as the housing census. To this end, we propose the use of information extraction methodologies based on data mining techniques from Artificial Intelligence sciences. The methodology is evaluated experimentally in a complex and extensive territory, the Mediterranean coast of the Spanish peninsula. The results make it possible to identify an urban profile that includes all the neighbourhoods, to which the state of the art attributes gentrification, resulting in the proportion of rented dwellings that are essential for this purpose. It is concluded that the proposed methodology is useful to evidence territories with similar signs to urban environments with gentrification, allowing the early detection of similar processes in other areas. |
| publisher |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Artes - Instituto de Investigaciones Hábitat, Ciudad & Territorio |
| publishDate |
2018 |
| url |
https://revistas.unal.edu.co/index.php/bitacora/article/view/70145 |
| work_keys_str_mv |
AT abarcaalvarezfranciscojavier signsofgentrificationusingartificialintelligenceidentificationthroughthedwellingcensus AT campossanchezfranciscosergio signsofgentrificationusingartificialintelligenceidentificationthroughthedwellingcensus AT reinosobellidorafael signsofgentrificationusingartificialintelligenceidentificationthroughthedwellingcensus AT abarcaalvarezfranciscojavier senalesdegentrificacionatravesdelainteligenciaartificialidentificacionmedianteelcensodevivienda AT campossanchezfranciscosergio senalesdegentrificacionatravesdelainteligenciaartificialidentificacionmedianteelcensodevivienda AT reinosobellidorafael senalesdegentrificacionatravesdelainteligenciaartificialidentificacionmedianteelcensodevivienda AT abarcaalvarezfranciscojavier sinaisdegentrificacaoatravesdainteligenciaartificialidentificacaoatravesdorecenseamentohabitacional AT campossanchezfranciscosergio sinaisdegentrificacaoatravesdainteligenciaartificialidentificacaoatravesdorecenseamentohabitacional AT reinosobellidorafael sinaisdegentrificacaoatravesdainteligenciaartificialidentificacaoatravesdorecenseamentohabitacional |
| _version_ |
1709546721679245312 |
| spelling |
oai:www.revistas.unal.edu.co:article-701452019-04-08T16:17:27Z Signs of gentrification usin g Artificial Intelligence: identification through the Dwelling Census Señales de gentrificación a través de la Inteligencia Artificial: identificación mediante el censo de vivienda Sinais de gentrificação através da Inteligência Artificial: identificação através do recenseamento habitacional Abarca-Alvarez, Francisco Javier Campos-Sánchez, Francisco Sergio Reinoso-Bellido, Rafael urban profile artificial neural network self-organizing map forecast perfil urbano red neuronal artificial mapa auto-organizado predicción Arquitectura Urbanismo Diseño Gentrification is not always detected by society, policy and planning in time to interpret its dynamics and implement interventions that mitigate its adverse effects. Its implications are so important in the social physiognomy of cities, that any tool that can predict or evidence any kind of sign of gentrification will be relevant. The research seeks to assess the feasibility of detecting areas linked to gentrification processes, incipient or settled, by using common sources of information in cities, such as the housing census. To this end, we propose the use of information extraction methodologies based on data mining techniques from Artificial Intelligence sciences. The methodology is evaluated experimentally in a complex and extensive territory, the Mediterranean coast of the Spanish peninsula. The results make it possible to identify an urban profile that includes all the neighbourhoods, to which the state of the art attributes gentrification, resulting in the proportion of rented dwellings that are essential for this purpose. It is concluded that the proposed methodology is useful to evidence territories with similar signs to urban environments with gentrification, allowing the early detection of similar processes in other areas. La gentrificación no siempre es detectada por la sociedad, la política y la planificación a tiempo de interpretar sus dinámicas y de llevar a cabo intervenciones que mitiguen sus efectos adversos. Sus implicaciones son tan importantes en la fisionomía social de las ciudades, que será relevante toda herramienta que permita pronosticar o evidenciar cualquier tipo de señal de la gentrificación. La investigación trata de evaluar la viabilidad de la detección de ámbitos vinculados a procesos de gentrificación, incipientes o asentados, mediante el uso de fuentes de información comunes en las ciudades, como son los censos de viviendas. Para ello se propone el uso de metodologías de extracción de información basadas en técnicas de minería de datos procedentes de las ciencias de la Inteligencia Artificial. La metodología se evalúa experimentalmente en un territorio complejo y extenso, la costa mediterránea peninsular española. Los resultados permiten identificar un perfil urbano que incluye todas las barriadas a las que el estado del arte atribuye gentrificación, resultando la proporción de viviendas en alquiler determinante. Se concluye que la metodología propuesta es útil para evidenciar territorios con señales similares a los entornos urbanos con gentrificación, permitiendo la detección temprana de procesos semejantes en otros ámbitos. A gentrificação nem sempre é detetada a tempo pela sociedade, a política e o planeamento para levar a cabo intervenções que mitiguem os seus efeitos adversos. As suas implicações são tão importantes na fisionomia social das cidades, que será relevante qualquer ferramenta que permita prognosticar ou evidenciar qualquer tipo de sinal da gentrificação. Neste artigo apresenta-se uma investigação que avalia a viabilidade da deteção de âmbitos vinculados a processos de gentrificação, incipientes ou consolidados, através da utilização de fontes de informação comuns nas cidades, como os recenseamentos habitacionais. Para isto, propõe-se a utilização de metodologias de extração de informação baseadas em técnicas de mineração de dados da Inteligência Artificial, aplicadas a um território complexo e extenso: a costa mediterrânea peninsular espanhola. Os resultados permitem identificar um perfil urbano que inclui todos os bairros a que os conhecimentos atuais atribuem gentrificação, demonstrando-se que a proporção de casas para alugar é um sinal relevante de gentrificação. Conclui-se que a metodologia proposta é útil para evidenciar territórios com sinais semelhantes aos dos ambientes urbanos com gentrificação, permitindo a deteção precoce de processos semelhantes noutros âmbitos. Universidad Nacional de Colombia - Sede Bogotá - Facultad de Artes - Instituto de Investigaciones Hábitat, Ciudad & Territorio 2018-05-01 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares application/pdf text/html application/xml https://revistas.unal.edu.co/index.php/bitacora/article/view/70145 10.15446/bitacora.v28n2.70145 Bitácora Urbano Territorial; Vol. 28 Núm. 2 (2018): Transformaciones Urbanas (Renovación Urbana, Revitalización, Gentrificación, Mejoramiento); 103-114 Bitácora Urbano Territorial; Vol. 28 No. 2 (2018): Transformaciones Urbanas (Renovación Urbana, Revitalización, Gentrificación, Mejoramiento); 103-114 Bitácora Urbano Territorial; v. 28 n. 2 (2018): Transformaciones Urbanas (Renovación Urbana, Revitalización, Gentrificación, Mejoramiento); 103-114 2027-145X 0124-7913 spa https://revistas.unal.edu.co/index.php/bitacora/article/view/70145/pdf https://revistas.unal.edu.co/index.php/bitacora/article/view/70145/html https://revistas.unal.edu.co/index.php/bitacora/article/view/70145/70232 /*ref*/Abarca-Alvarez, F. J., Campos-Sánchez, F. S., & Osuna-Pérez, F. (2015). Taxonomía de las inmigraciones turísticas de Andalucía basada en las cualidades de sus asentamientos urbanos. En Migraciones Contemporáneas, Territorio y Urbanismo (pp. 301-315). Cartagena. /*ref*/Abarca-Alvarez, F. J., Campos-Sánchez, F. S., & Reinoso-Bellido, R. (2017). Methodology of Decision Support through GIS and Artificial Intelligence: Implementation for Demographic Characterization of Andalusia based on Dwelling. Estoa, 6(11), 33-51. https://doi.org/10.18537/est.v006.n011.a03 /*ref*/Abarca-Alvarez, F. J., & Osuna-Pérez, F. (2013). Cartografías semánticas mediante redes neuronales: los mapas auto-organizados (SOM) como representación de patrones y campos. EGA. Revista de expresión gráfica arquitectónica, 18(22). https://doi.org/10.4995/ega.2013.1692 /*ref*/Alexis, O., & Villanueva, R. (2017). GENTRIFICACIÓN EN CENTROS HISTÓRICOS : UNA DISCUSIÓN CONCEPTUAL. Devenir - Revista de estudios sobre patrimonio edificado, 4(7), 69-82. /*ref*/Basara, H. G., & Yuan, M. (2008). Community health assessment using self-organizing maps and geographic information systems. International journal of health geographics, 7, 67. https://doi.org/10.1186/1476-072X-7-67 /*ref*/Casellas, A., Dot Jutgla, E., & Pallares-Barbera, M. (2008). Estrategia de regeneración urbana y procesos de gentrificación en el distrito Tecnológico de Barcelona Globalización económica : amenazas y oportunidades para los territorios III Jornadas de Geografía Económica. En J. M. A. Puebla (Ed.), Globalización Económica: Amenazas y Oportunidades para los territorios (pp. 109-118). Valencia: Universitat de Valencia, Departament de Geografia. https://doi.org/10.13140/2.1.3695.1841 /*ref*/Cohen, J. (1998). Statistical Power Analysis for the Behavioral Sciences (Vol. 2nd Editio). Lawrence Erlbaum Associates, Publishers. https://doi.org/10.1234/12345678 /*ref*/Danai, E., & Marcou, B. (2015). Cambios socioterritoriales e indicios de gentrificación. ACADEMIA XXII, 6(12), 47-59. Recuperado a partir de https://revistas.unam.mx/index.php/aca/article/view/51982 /*ref*/Duque Calvache, R. (2010a). La difusión del concepto gentrificación en España: Reflexión teórica y debate terminológico. Biblio 3W REVISTA BIBLIOGRÁFICA DE GEOGRAFÍA Y CIENCIAS SOCIALES, XV(875). Recuperado a partir de https://www.ub.edu/geocrit/b3w-875.htm /*ref*/Duque Calvache, R. (2010b). Procesos de gentrification de cascos antiguos en España: el Albaicín de Granada. Recuperado a partir de https://www.tdx.cat/handle/10803/33049 /*ref*/Eastaway, M. P., & Solsona, M. S. (2014). Dinámicas en el entorno construido: Renovación, gentrificación y turismo. el caso de la barceloneta. Architecture, City and Environment, 9(26), 201-222. https://doi.org/10.5821/ace.9.26.3688 /*ref*/Faggiano, L., de Zwart, D., García-Berthou, E., Lek, S., & Gevrey, M. (2010). Patterning ecological risk of pesticide contamination at the river basin scale. Science of the Total Environment, 408(11), 2319-2326. https://doi.org/10.1016/j.scitotenv.2010.02.002 /*ref*/Galster, G., & Peacock, S. (1986). Urban gentrification: Evaluating alternative indicators. Social Indicators Research, 18, 321-337. /*ref*/Hamaina, R., Leduc, T., & Moreau, G. (2012). Towards Urban Fabrics Characterization based on Buildings Footprints. En J. Gensel (Ed.), Bridging the Geographic Information Sciences (pp. 231-248). https://doi.org/10.1007/978-3-642-29063-3_13 /*ref*/Hiernaux, D., & González, C. I. (2014). Turismo y gentrificación: pistas teóricas sobre una articulación. Revista de Geografía Norte Grande, 58, 55-70. https://doi.org/10.4067/S0718-34022014000200004 /*ref*/Janoschka, M., Sequera, J., & Salinas, L. (2014). Gentrification in Spain and Latin America - a Critical Dialogue. Revista de Geografía Norte Grande, 58, 7-40. https://doi.org/10.1111/1468-2427.12030 /*ref*/Kauko, T. (2005). Using the self-organising map to identify regularities across country-specific housing-market contexts. Environment and Planning B: Planning and Design, 32(1), 89-110. https://doi.org/10.1068/b3186 /*ref*/Keen, P. G. W. (1987). Decision support systems: The next decade. Decision Support Systems, 3(3), 253-265. https://doi.org/10.1016/0167-9236(87)90180-1 /*ref*/Kohonen, T. (1990). The Self-Organizing Map. En Proceeding of the IEEE (Vol. 78, pp. 1464-1480). https://doi.org/10.1109/5.58325 /*ref*/Lees, L., Slater, T., & Wyly, E. K. (2008). Gentrification, 310. https://doi.org/10.4324/9780203940877 /*ref*/Martínez Veiga, U. (1999). Pobreza, segregación y exclusión espacial: la vivienda de los inmigrantes extranjeros en España. Barcelona: Icaria. /*ref*/Power, D. J., Sharda, R., & Burstein, F. (2015). Decision Support Systems. En C. L. Cooper (Ed.), Wiley Encyclopedia of Management (pp. 1-4). Chichester, UK: John Wiley & Sons, Ltd. /*ref*/Ritter, H., & Kohonen, T. (1989). Self-organizing semantic maps. Biological Cybernetics, 61(4), 241-254. https://doi.org/10.1007/BF00203171 /*ref*/Rofe, M. W. (2003). «I want to be global»: Theorising the gentrifying class as an emergent élite global community. Urban Studies, 40(12), 2511-2526. https://doi.org/10.1080/0042098032000136183 /*ref*/Salah, M., Trinder, J., & Shaker, A. (2009). Evaluation of the self‐organizing map classifier for building detection from lidar data and multispectral aerial images. Journal of Spatial Science, 54(2), 15-34. https://doi.org/10.1080/14498596.2009.9635176 /*ref*/Sargatal, M. A. (2014). Gentrificación e inmigración en los centros históricos: El caso del barrio del Raval en Barcelona. Revista Electrónica de Geografía y Ciencias Sociales, 94(Robinson 1989), 1-14. /*ref*/Shanmuganathan, S., & Li, Y. (2016). An AI based approach to multiple census data analysis for feature selection. Journal of Intelligent & Fuzzy Systems, 31(2), 859-872. https://doi.org/10.3233/JIFS-169017 /*ref*/Silver, M. S. (2008). On the Design Features of Decision Support Systems : The Role of System Restrictiveness and Decisional Guidance. En F. Burstein & C. W. Holsapple (Eds.), Handbook on Decision Support Systems 2: Variations (pp. 261-291). Springer-Verlag Berlin Heidelberg. /*ref*/Spielman, S. E., & Thill, J.-C. (2008). Social area analysis, data mining, and GIS. Computers, Environment and Urban Systems, 32(2), 110-122. https://doi.org/10.1016/j.compenvurbsys.2007.11.004 /*ref*/Takatsuka, M. (2001). An application of the Self-Organizing Map and interactive 3-D visualization to geospatial data. Proceedings of the 6th International Conference on GeoComputation, 24-26. /*ref*/Tapada-Berteli, T., & Arbaci, S. (2011). Proyectos de regeneracion urbana en Barcelona contra la segregacion socioespacial (1986-2009): ¿solución o mito? Architecture, City and Environment, (17), 187-222. /*ref*/Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: context, process, and purpose. The American Statistician, 1305(April), 00-00. https://doi.org/10.1080/00031305.2016.1154108 /*ref*/Wu, P. K., & Hsiao, T. C. (2015). Factor Knowledge Mining Using the Techniques of AI Neural Networks and Self-Organizing Map. International Journal of Distributed Sensor Networks, 2015. https://doi.org/10.1155/2015/412418 /*ref*/Yrigoy, I. (2017). Airbnb en Menorca: ¿Una nueva forma de gentrificación turística?: Localización de la vivienda turística, agentes e impactos sobre el alquiler residencial. Scripta Nova. Revista Electrónica de Geografía y Ciencias Sociales, 21(580). Recuperado a partir de https://revistes.ub.edu/index.php/ScriptaNova/article/view/18573 Derechos de autor 2018 Bitácora Urbano Territorial https://creativecommons.org/licenses/by/4.0 |