Comparison of machine learning techniques for predicting energy loads in buildings
Machine learning methods can be used to help design energy-efficient buildings reducing energy loads while maintaining the desired internal temperature. They work by estimating a response from a set of inputs such as building geometry, material properties, project costs, local weather conditions, as...
Uloženo v:
Hlavní autoři: | Duarte, Grasiele Regina, Fonseca, Leonardo Goliatt da, Goliatt, Priscila Vanessa Zabala Capriles, Lemonge, Afonso Celso de Castro |
---|---|
Médium: | Online |
Jazyk: | eng |
Vydáno: |
ANTAC - Associação Nacional de Tecnologia do Ambiente Construído
2017
|
On-line přístup: | https://seer.ufrgs.br/ambienteconstruido/article/view/69635 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Podobné jednotky
-
Comparison of behavior between angle shear connectors with different thickness under monotonic and cyclic loadings
Autor: Ayala, Diego, a další
Vydáno: (2021) -
Domus method for predicting sunlit areas on interior surfaces
Autor: Rocha, Ana Paula de Almeida, a další
Vydáno: (2018) -
GFRP: assessing load transfer from bar surface to concrete
Autor: Castro, Protásio Ferreira e
Vydáno: (2008) -
Construction duration predictive model based on factorial analysis and fuzzy logic
Autor: Maués, Luiz Maurício Furtado, a další
Vydáno: (2019) -
PREDICTION OF ACOUSTICS PARAMETERS IN JESUIT CHURCHES IN CORDOBA AND SAN IGNACIO MINI.
Autor: Abadía, Leandra
Vydáno: (2017)