Comparison of machine learning techniques for predicting energy loads in buildings
Machine learning methods can be used to help design energy-efficient buildings reducing energy loads while maintaining the desired internal temperature. They work by estimating a response from a set of inputs such as building geometry, material properties, project costs, local weather conditions, as...
Αποθηκεύτηκε σε:
Κύριοι συγγραφείς: | Duarte, Grasiele Regina, Fonseca, Leonardo Goliatt da, Goliatt, Priscila Vanessa Zabala Capriles, Lemonge, Afonso Celso de Castro |
---|---|
Μορφή: | Online |
Γλώσσα: | eng |
Έκδοση: |
ANTAC - Associação Nacional de Tecnologia do Ambiente Construído
2017
|
Διαθέσιμο Online: | https://seer.ufrgs.br/ambienteconstruido/article/view/69635 |
Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
Παρόμοια τεκμήρια
-
Comparison of behavior between angle shear connectors with different thickness under monotonic and cyclic loadings
ανά: Ayala, Diego, κ.ά.
Έκδοση: (2021) -
Domus method for predicting sunlit areas on interior surfaces
ανά: Rocha, Ana Paula de Almeida, κ.ά.
Έκδοση: (2018) -
GFRP: assessing load transfer from bar surface to concrete
ανά: Castro, Protásio Ferreira e
Έκδοση: (2008) -
Construction duration predictive model based on factorial analysis and fuzzy logic
ανά: Maués, Luiz Maurício Furtado, κ.ά.
Έκδοση: (2019) -
PREDICTION OF ACOUSTICS PARAMETERS IN JESUIT CHURCHES IN CORDOBA AND SAN IGNACIO MINI.
ανά: Abadía, Leandra
Έκδοση: (2017)