Comparison of machine learning techniques for predicting energy loads in buildings
Machine learning methods can be used to help design energy-efficient buildings reducing energy loads while maintaining the desired internal temperature. They work by estimating a response from a set of inputs such as building geometry, material properties, project costs, local weather conditions, as...
Enregistré dans:
Auteurs principaux: | Duarte, Grasiele Regina, Fonseca, Leonardo Goliatt da, Goliatt, Priscila Vanessa Zabala Capriles, Lemonge, Afonso Celso de Castro |
---|---|
Format: | Online |
Langue: | eng |
Publié: |
ANTAC - Associação Nacional de Tecnologia do Ambiente Construído
2017
|
Accès en ligne: | https://seer.ufrgs.br/ambienteconstruido/article/view/69635 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Comparison of behavior between angle shear connectors with different thickness under monotonic and cyclic loadings
par: Ayala, Diego, et autres
Publié: (2021) -
Domus method for predicting sunlit areas on interior surfaces
par: Rocha, Ana Paula de Almeida, et autres
Publié: (2018) -
GFRP: assessing load transfer from bar surface to concrete
par: Castro, Protásio Ferreira e
Publié: (2008) -
Construction duration predictive model based on factorial analysis and fuzzy logic
par: Maués, Luiz Maurício Furtado, et autres
Publié: (2019) -
PREDICTION OF ACOUSTICS PARAMETERS IN JESUIT CHURCHES IN CORDOBA AND SAN IGNACIO MINI.
par: Abadía, Leandra
Publié: (2017)