Comparison of machine learning techniques for predicting energy loads in buildings
Machine learning methods can be used to help design energy-efficient buildings reducing energy loads while maintaining the desired internal temperature. They work by estimating a response from a set of inputs such as building geometry, material properties, project costs, local weather conditions, as...
保存先:
主要な著者: | Duarte, Grasiele Regina, Fonseca, Leonardo Goliatt da, Goliatt, Priscila Vanessa Zabala Capriles, Lemonge, Afonso Celso de Castro |
---|---|
フォーマット: | Online |
言語: | eng |
出版事項: |
ANTAC - Associação Nacional de Tecnologia do Ambiente Construído
2017
|
オンライン・アクセス: | https://seer.ufrgs.br/ambienteconstruido/article/view/69635 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Comparison of behavior between angle shear connectors with different thickness under monotonic and cyclic loadings
著者:: Ayala, Diego, 等
出版事項: (2021) -
Domus method for predicting sunlit areas on interior surfaces
著者:: Rocha, Ana Paula de Almeida, 等
出版事項: (2018) -
GFRP: assessing load transfer from bar surface to concrete
著者:: Castro, Protásio Ferreira e
出版事項: (2008) -
Construction duration predictive model based on factorial analysis and fuzzy logic
著者:: Maués, Luiz Maurício Furtado, 等
出版事項: (2019) -
PREDICTION OF ACOUSTICS PARAMETERS IN JESUIT CHURCHES IN CORDOBA AND SAN IGNACIO MINI.
著者:: Abadía, Leandra
出版事項: (2017)