Comparison of machine learning techniques for predicting energy loads in buildings
Machine learning methods can be used to help design energy-efficient buildings reducing energy loads while maintaining the desired internal temperature. They work by estimating a response from a set of inputs such as building geometry, material properties, project costs, local weather conditions, as...
Zapisane w:
Główni autorzy: | Duarte, Grasiele Regina, Fonseca, Leonardo Goliatt da, Goliatt, Priscila Vanessa Zabala Capriles, Lemonge, Afonso Celso de Castro |
---|---|
Format: | Online |
Język: | eng |
Wydane: |
ANTAC - Associação Nacional de Tecnologia do Ambiente Construído
2017
|
Dostęp online: | https://seer.ufrgs.br/ambienteconstruido/article/view/69635 |
Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|
Podobne zapisy
-
Comparison of behavior between angle shear connectors with different thickness under monotonic and cyclic loadings
od: Ayala, Diego, i wsp.
Wydane: (2021) -
Domus method for predicting sunlit areas on interior surfaces
od: Rocha, Ana Paula de Almeida, i wsp.
Wydane: (2018) -
GFRP: assessing load transfer from bar surface to concrete
od: Castro, Protásio Ferreira e
Wydane: (2008) -
Construction duration predictive model based on factorial analysis and fuzzy logic
od: Maués, Luiz Maurício Furtado, i wsp.
Wydane: (2019) -
PREDICTION OF ACOUSTICS PARAMETERS IN JESUIT CHURCHES IN CORDOBA AND SAN IGNACIO MINI.
od: Abadía, Leandra
Wydane: (2017)